Step of Proof: absval_wf |
12,41 |
|
Inference at *
Iof proof for Lemma absval wf:
x:
. |x|
by ((((Unfold `absval` 0)
CollapseTHEN (D 0))
)
CollapseTHENA ((Auto_aux (first_nat 1:n
C) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
C1:
C1: 1. x :
C1:
if 0
z x then x else -x fi
C.